$1^{\text {st }}$ Alternative Academic Work(AAW) for the $\mathbf{2}^{\text {nd }}$ Quarter
 (posted on Oct. 14, 2013, Monday)

Name:

Year and Section:

\qquad
Rating: \qquad

Solve the following problems by showing the solutions(as needed *) completely. Write all your answers and graphs on the graphing paper(s). Submission of this $1^{\text {st }}$ AAW will be on or before November 4-6, 2013. (55pts)
1.) Let $f(x)=x^{3}-3 x^{2}-10 x+24$. Find the following: (20pts)
a.) Constant term
b.) Coefficients
c.) Leading coefficient
d.) Degree of $f(x)$
e.) Leading term
f.) Factors of a_{0}
g.) Factors of a_{n}
h.) Possible rational zeros
i.) Number of variations if $f(x)$ *
j.) Number of variations if $f(-x)$ *
k.) y-intercept
l.) x-intercepts or zeros of $f(x)$ *
m.) factored form or linear and quadratic factors
n.) end behavior
o.) Domain
p.) Range
q.) Graph (4pts)
2.) If (3-i) is a root of $P(x)=2 x^{3}-13 x^{2}+26 x-10$, find the remaining roots *. (5pts)
3.) Sketch the graph of $f(x)=2^{(x-1)}+3$ and $g(x)=2^{x}$ (broken line-basis graph) in one cartesian plane then give all of the properties/observations/attributes (domain, range, x-intercept *, y-intercept *, horizontal asymptote, vertical asymptote, increasing or decreasing graph, one to one or not) of $f(x)$. (10pts)
4.) Sketch the graph of $f(x)=-4+\log _{2}(x+3)$ and $g(x)=\log _{2} x$ (broken line-basis graph) in one cartesian plane then give all of the properties/observations/attributes(domain, range, x-intercept *, y-intercept *, horizontal asymptote, vertical asymptote, increasing or decreasing graph, one to one or not) of $f(x)$. (10pts)
5.) Express $\left(\frac{2}{3}\right)^{-3}=\frac{27}{8}$ in logarithmic form. (2pts)
6.) Express $\log _{4}\left(\frac{1}{64}\right)=-3$ in exponential form. (3pts)
7.) Express $\log _{b} \frac{x^{2} y^{3}}{z^{4}}$ in expanded form *. (5pts)

