1st Alternative Academic Work(AAW) for the 2nd Quarter

(posted on Oct. 14, 2013, Monday)

Name:	Rating:
Year and Section:	Score:

Solve the following problems by showing the solutions(as needed *) completely. Write all your answers and graphs on the graphing paper(s). Submission of this 1^{st} AAW will be on or before November 4 – 6, 2013. **(55pts)**

1.) Let $f(x) = x^3 - 3x^2 - 10x + 24$. Find the following : (20pts)

- a.) Constant term
- b.) Coefficients
- c.) Leading coefficient
- d.) Degree of f(x)
- e.) Leading term
- f.) Factors of a₀
- g.) Factors of a_n
- h.) Possible rational zeros
- i.) Number of variations if f(x) *
- j.) Number of variations if f(-x) *
- k.) y-intercept
- I.) x-intercepts or zeros of f(x) *
- m.)factored form or linear and quadratic factors
- n.) end behavior
- o.) Domain
- p.) Range
- q.) Graph (4pts)

2.) If (3 - i) is a root of P(x) = $2x^3 - 13x^2 + 26x - 10$, find the remaining roots *. (5pts)

- 3.) Sketch the graph of $f(x) = 2^{(x-1)} + 3$ and $g(x) = 2^x$ (broken line-basis graph) in one cartesian plane then give all of the properties/observations/attributes (domain, range, x-intercept *, y-intercept *, horizontal asymptote, vertical asymptote, increasing or decreasing graph, one to one or not) of f(x). **(10pts)**
- 4.) Sketch the graph of $f(x) = -4 + \log_2(x+3)$ and $g(x) = \log_2 x$ (broken line-basis graph) in one cartesian plane then give all of the properties/observations/attributes(domain, range, x-intercept *, y-intercept *, horizontal asymptote, vertical asymptote, increasing or decreasing graph, one to one or not) of f(x). (10pts)

5.) Express
$$\left(\frac{2}{3}\right)^{-3} = \frac{27}{8}$$
 in logarithmic form. (2pts)

- 6.) Express $\log_4\left(\frac{1}{64}\right)$ = -3 in exponential form. (3pts)
- 7.) Express $\log_{b} \frac{x^2 y^3}{z^4}$ in expanded form *. (5pts)